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EFFECT OF INITTAL VELOCITY ON ONE-DIMENSIONAL, AMBIPOLAR,
SPACE-CHARGE CURRENTS

by Walton L. Howes

SUMMARY

Oppositely directed flows of positive and negative charges constitute an
ambipolar current. A general case is analyzed in which the charges traverse
the evacuated space between plane-parallel boundaries and all particles of a
given charge species are monoenergetic. It is assumed that the charges may
possess nonvanishing initial kinetic energy. This represents an extension of
analyses by Langmuir and Miller-Lubeck for vanishing initial kinetic energy.
Sample calculations of dimensionless current densities, electric and potential
fields, and charge-density distributions are exhibited for cases where the
electric field is assumed to vanish at one boundary but the species initial ve-
locities may not. It is shown that resulting ion currents may be several times
the Child's law limit if initial kinetic energies are of the order of the po-
tential energy.

INTRODUCTION

The analysis of one-dimensional, space-charge flows determined by the ac-
tion of an electric field on charges of a given sign originated with studies by
Child (ref. 1) and Langmuir (ref. 2) of unipolar currents in an otherwise evac-
uated space between plane electrodes. The recognition of space-charge-limited
current, that is, of the existence of a maximum current for a given electrode
separation and potential difference, resulted from these studies. Vanishing
initial velocity of all particles was assumed. Ultimately this assumption was
dropped. In particular, Salzberg and Haeff (ref. 3) and Fay, Samuel, and
Shockley (ref. 4) coincidentally and independently derived all possible non-
relativistic solutions for one-dimensional, unipolar, space-charge current with
unique initial particle velocity.

One possible method of overcoming the unipolar space-charge-current limi-
tation is to neutralize the space charge by injecting opposite charges at the
final boundary plane traversed by the original charge species. The theory for
the resulting ambipolar currents was derived by Langmuir (ref. 5). A required
second integration of Poisson's equation, yielding the potential distribution,
was performed by numerical integration. Miller-Libeck (ref. 6) aesthetically
improved on Langmuir's analysis by showing that the second integration in-
volved elliptic integrals.



For the ambipolar-current case, Langmuir and Miller-Lubeck both assumed
vanishing initial velocity of each charge species. As in the unipolar-current
case, this assumption may be discarded. The resulting analysis, presented
herein, is essentially the ambipolar equivalent of the unipolar theories in
references 3 and 4; however, the results presented are concerned only with mon-
otonic potential fields. The electric and potential fields and charge-density
distributions are calculated. The possibility of overcoming the Child's law
1limit on ion current by means of ambipolar currents with nonvanishing initial
velocities 1s emphasized.

A1l of the cited analyses represent special cases of that which follows
and may be derived from it.

ANATLYSIS

Consider two infinite parallel planes (fig. 1) separated by a distance 1
and associated with different electric potentials. (Only an association is in-
tended. The planes are not to be re-
garded necessarily as physical entities,
say electrodes, which might mechanically
limit the motion of charges at the plane
boundaries.) Positive ions are intro-
duced normal to the plane associated with
the higher potenti?l, and negatively
charged particles (electrons or negative
©— —© ions) are introduced normal to the plane
associated with the lower potential. The
rate of charge injection is assumed to be
steady; then, presumably, a steady
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{W=W positive-negative ion counterflow, that
=t is, an ambipolar current, will exist be-
x=0 x=1 tween the boundary planes. The currents

€=0 €=1 LU . . .
. are assumed collisionless. (This implies

Figure 1, - Geometry and coordinate scheme. that the currents are one-dimensional. )

A1l particles of a given species are as-
sumed to be injected at the same velocity.

Define a coordinate x, having its origin at the plane of positive-ion in-
jection, parallel to and increasing in value in the direction of the ion flow.
(A1l symbols are defined in the appendix.) The nonrelativistic equations (in
Gaussian units) describing the particle motions and field distributiocns for
two-charge species are

Charge conservation:

=0 (1)




Equations of motion:

T = eié’: (2)
Poisson's equation:
9 o axo, + o) (3)
= -4dyx(p, + 0 3
dX2 + -
where
p=op.+p_ (4)
and
J+
Py = T (5)

where J 1is the current density of the positive ions or electrons, denoted by
the subscript + or -, respectively, m 1s the particle mass, v the particle
velocity, e the charge, p the charge density, & +the electric field, and ¢
the electric potential.

By introducing ¢ 1in equation (2) and integrating, the particle velocity
of both species may be represented by

Vi = i[‘ni(‘P - Po,1) Vio,z]l/z (6)

where the subscripts O associated with the positive ions (+) and 1 associ-
ated with the electrons (-) refer here to initial conditions and

ze

I+

n, = (7)

ﬁi

Substitute the right sides of equations (5) and (6) in equation (3) and
define

qD_ch
= —— 8
il (8)
where ¢ = @; at the final boundary (x = 1) traversed by the ions. Also,
define
x= £1 (9)

and,
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N /-
a J‘(-’li) >0 (10)

Jp \TL

(The quantity a2 can be shown to be the ratio of the product of charge den-
sity and total kinetic energy of the electron current at any given value of &
to that of the positive ion current at the same value of &.) Next, define

2
V10

W+O = -1]+CPZ (ll)

where vyg 1s the initial velocity (at x, &€ = 0) of the positive ions, and

va
= — 2
w_1 70, (12)

where v_3 1s the initial velocity (at x =1, or & = 1) of the electrons.
Finally, let

4H12j+

J, = —(———)175 (13)

1,93
Then, equation (3) may be rewritten in the dimensionless form

v = [+ )P e -y 4w ) (10)

where primes denote differentiation with respect to €, and, without loss of
generality, o = 0 at x, § = O. The quantities w,y and w_j are initial
kinetic- to potential-energy ratios for ions and electrons, respectively,
whereas the terms y + wyy and 1 -y + w_yp, respectively, represent the local
kinetic energies of ions and electrons relative to the initial potential energy
of both species. The guantity J; is proportional to the ratio between the
ion current density Jj,, and the unipolar, space-charge-limited, ion current
density jm+ for vanishing initial velocity. In particular,

4
Jy =35 57— (15)

where

()" .



results from the solution of equation (14) for unipolar, space-charge-limited
ion current.

In order to determine the charge-density distribution, equation (3) may
also be written in the quasi-dimensionless form

Py
T o4ma

p (17)

In equation (17), y" may be replaced by the right side of equation (14). In
the absence of electrons, this result yields, for y = 1 (i.e., £ = 1),

where Pm+3 is the lon charge density at x = 1 for unipolar, space-charge-
1imited, current. For ambipolar currents, equations (14), (17), and (18) re-
sult in

= (y + o) M2 a1 -y W)L/ (19)
P

which expresses the net charge-density distribution. Equation (19) consists of
the sum of the two components

Py

Py (v + W+o)_l/2 (20)

p_

Pm+3

= -a(l -y +wy)L/2 (21)

determining the charge~density distribution for each species.

By defining J, proportional to an ion-current ratio, the emphasis in
equation (14) is on ion current characteristics; however, by redefining J
proportional to an electron-current ratio, equation (14) may be derived in an
alternative form, namely,

' 1 - -
y":J_[g (y'l'w_l_o) 1/2 - (l —y+w_l) 1/2] (22)
where
4ml2y 4 -
T NETE RS =)
(ﬂ_CPz)
and.



 (a)"

(24)

is the unipolar, space-charge-limited, electron-current density. Equation (22)
may be treated in a manner analdgous to the preceding treatment of equa-
tion (14), and thus alternative forms for the charge-density distributions may

be obtained. Specifically,

2ol w1y ey (25)

and when equations (21) and (20), respectively, are considered,

°- .2 (26)

Pp-0  2Ppyy

) P+
== - (27)
Pm-0 Pm+7

where pp_o 1s the electron charge density at x = O for unipolar, space-
charge-limited current.

Equation (26) or (27) allows a new interpretation of the coefficient a.
In particular,

Py
a=—mo (28)
Pm+1

that is, a is the absolute value of the electron- to ion-charge-density ratio
associated with the final boundaries traversed by the respective species under
the conditions of unipolar, space~charge-limited currents. The coefficient a
also relates the relative electron current and ion current according to

e

'l

- ada
= - (29)
m- Jmt

.

which follows from definitions (10), (16), and (24).

According to equations (19), (20), and (21) the charge-density distribu-
tions may be calculated as functions of the dimensionless potential y for
assumed values of the dimensionless energy parameters wy,, and w_; and the
coefficient a. However, the variation of y, itself, as a function of the
dimensionless distance £ is determined by equation (14).

Integrating equation (14) twice yields, consecutively, the electric field
and the potential distribution. The first integration is elementary and re-



sults in

y' = L —[4:J+{(y + W+o)l/2 - Wl_l_éz + a[(l -y W_l)l/z - (1 + W_l)l/z]}

= oN
z11/2 '
ZSO
+ | =— (30)
\#]
where &€ = €3 at £ = 0. Equation (30) is not integrable in terms of elemen-

tary functions. When the boundary condition y =0 at & = 0 is used, the
solution has the form

iy \"1/2 (vo)°
£ (2 hol7r85 e g5 (31)
Jm+ 0 +02 -1 Jy

where

2
M y -1/2
o} 3
hol¥s2,WigsW_1, (J+ =T ~/f [(y + w+o)l/2 +a(l -y + w_l)l/2 - gé] dy
0

(32)
and,
N2
gO = Wl_l_éz + a(l + W_:L)l/2 - g—zg_?_ (53)

Equation (14) can be integrated alternatively by using y =1 at &£ =1 as
the lower limit to obtain consecutively

y! o= € _ _[4J+{(y + w+o)l/2 - (1 + w_,_o)l/2 + a[(l -y + w_l)l/2

?
N

and
. 1 2
J+ _1/2 le?
1 -E8={+ hy|y,8,W40,Vo15 =5 (35)
Jm+ +

where & =& at £ =1,



Ll [(y + W+o)l/2 + a1l - vy + W—l)l/z _ g:‘_:]-1/2 iy

(36)
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and.

r\2
8 = (1 + W+o)l/2 + aW]:.{Z - Q]i (37)

ZJ,

But, subtracting equation (30) from equation (34) leads to

2(e2 _ @2
1_(_2@%?;9):(1 b )2 2 [ e e )

or gp = 81- Thus, for preassigned values of €y and 81, values of the co-
efficient a are not completely arbitrary. In particular, if €1 > €y, the
left side of equation (38) is positive, so that, necessarily,

(1 + W+o)l/2 _ Wj;éz

0< < =
BRI S (=)

which also defines r. Similarly, if 81 < 80,
a>r (40)

where the equality applies if &; = €. An explicilt expression for the ion
current ratio j./jp+ 1s derivable from equation (31) or (35) only if &
vanishes at one or both boundaries.

If €& =0 or €; =0, then J, vanishes from the integrand appearing in
the respective equation (32) or (36). Then an explicit expression for j+/jm+
is derivable from equation (31) or (35). (1f 80 % 0 and 81 # 0, the inte-
grations can still be expressed in closed form.) Because of charge conserva-
tion, the ion-current ratio is unique for specified boundary conditions and nay
be evaluated therefrom. Hence, for 80 = 0,

Iy
— = h%(y

: Lya,w 0,W_ 1,8 = 0) (41)
I+

whereas for €&, = 0,

Iy
2( =
- hi(y = 0,a,w,,w_1,& = 0) (42)



Also,

5. i
—jm+ = Elo(YJa:W+O;W_l;80 = O) + hl(y,a,w+o,w_l,8l = O)] (4:3)

Equations (41) to (43) are alternative expressions for the ion-current ratio.
The first expression is obtained by setting & = 1 in equation (31), the
second, by setting & = O 1in equation (35), and the third, by adding equa-
tions (31) and (35). The first two expressions are most convenient for compu-
tations. Moreover, the third expression requires that € vanish .at both
boundaries, whereas the first two require that € wvanish at only one boundary.
Applying equations (41) and (42) to equations (31) and (35), respectively,
yields

oy = O
ho(y = 1,a,w;0,W 1,0 = 0)

(44)

and

_ . hlr(y’a_’_w_-l-_()’v—l’el = O)
hl(y = O,a,W_I_O,W_l,El = 0)

1-& (45)

The final problem is that of evaluating the integral represented by hj,
or h; in equation (32) or (36), respectively. These integrals may be trans-
formed into a sum of elementary and elliptic integrals. The substitution

Yyt = €2 sin® o (46)

where

62 = 1 + Y10 + L) (47)

transforms the integrals into a known elliptic form

S {a)

= (5)63/2 sin a cos a

b (v,85W,0,%_1,€; = 0) {zo}

il

ho(.Y: a,Wi0,W_1,€0

X|sina + o cos o - é da (48)



where the upper quantities within the braces correspond to equation (32), the
lower quantities correspond to equation (36), and the integration limits are
given by

a = sin‘l[xy + w_l_o)e‘Z]:L/2 (49)

with a=ag for y=0 and o =ap for y = 1.

However, a more tractable form, in which unipolar and ambipolar contribu-
tions to the integrals are essentially separated, results by subsequently em-
ploying the trigonometric identity

Acos (a -0) = A sin ® sin o + A cos ® cos «

where
tan & = = (50)
a
and.
A2 = 1 + &2 (51)
In addition, let
a - 8= 2B (52)
Then, equations (48) may be rewritten in the form
ho(ys2,WeqsW_ 1,60 = O) _ 3(€3n2>1/2
- 24
hl(Y)a:w+O}W_l}8l = 0)
.t
Bl
X . [2 cos(28)(sin B cos B - 2 sindB cos B)
0
&
-1/2
+ %— sin(26)(1 - 8 sinB + 8 sin4;3)](1 - n2 sin?2B) / ag (53)

where

B = ]2—'- {sin'l[(y + W+O)‘5_2]l/2 - 6} (54)

with B = BO for y =0, and B = Bl for y = 1. Also,

10



n? = — 285 = x7E (55)

which also defines a new modulus k, to be used subsequently. Usually, n? > 1,
Thus, in order to obtain a value of the modulus less than unity, the substitu-
tion

nsinp=sinT * (58)

may be employed to transform equations (53) into a final form

.
hO(Y:a:W+O:W—l:60 = 0) <€3>l/2 Y]_
= °\za

{ro)

(1 - 8k°% sin®y + 8k* sin®*r) (1 - %% sinzY)_l/%]dT

[Zk cos(28)(sin v - 2k% sindr) + % sin(28)
hl(y,a,W+o,W_l;€]_ = 0)

(57)

where

sin ¥ = n sin(%— {sin'l[(y + w+o)e72]l/2 i, 6}) (58)

with ¥ =7y for y=0, and ¥ =77 for y = 1. Real solutions of equa-
tions (57) are obtained only if |sin Tl < 1. 1In equations (57), the elliptic
integrals vanish for unipolar ion currents, whereas the elementary integrals
vanish for ambipolar currents if a = 1. Although equations (57) have been
written for €n =0 and &; = 0, these assumptions are not necessary for eval-
uating the integrals; however, they are necessary for expressing j+/jm+ ex-
plicitly, as mentioned previocusly.

The elliptic integrals in equations (57) correspond to integrals 280.00
and 281.01 in reference 7. When these are used, the alternate solutions for
hpg and hy are found to be

[

0) 1/2

L= @)

[(Bkz - 5)F(tv,k) + 8(1 - 2k8) E(T,k) + Elk2 sin ¥ cos YT Vl - %2 sinzY]}

hn(y,a,win,w_ 1,8
O\ 2 S W00 W] 2~0

{Zk cos(28) [3(21{2 - l)cos ¥ - 2k? cos3‘(:| + % sin(28)
hl(}’:a;w-q-o;w_l:sl =

L L &1

TAIY

o]

(59)



where the former set of limits is associated with hy and the latter set with
hy. The quantities F(r,k) and E(v,k) are elliptic integrals of the first and
second kinds, respectively, defined by

Y
F(v,k) = / (1 - k2 sinlr) -1/2 ar (60)
0

) .
E(r,k) = / (1 - k2 sinr)1/2 &y (61)
0

Equations (59) in conjunction with equations (44) and (45), respectively, de-
termine implicit solutions for the potential distribution.

The preceding analysis permits the currents, fields, and charge distribu-
tions to be calculated directly for cases in which the electric field vanishes
at one boundary, at least, and ]8] > 0 1in the interval between the bound-
aries. Included among these possibilities are all of the corresponding cases
in the references cited. There also exists another series of cases for which
the electric field vanishes at one or two locations between the boundaries.
These cases, with at least one exception, may be treated by juxtaposing filelds
so that the boundary condition & = O (for & = 0, say) in the present analysis
coincides with the condition &€ = 0 for the type of distribution being con-
sidered. A simple Jjuxtaposition is unsatisfactory if the current of one or
both charge species is space-charge limited and the charge transmission coef-
ficient at the juxtaposition plane (¢ = 0) is not unity. Then, reflected cur-
rents must be considered.

PROCEDURE

With wyg and w.p given and a value of a selected, subject to in-
equality (38) or (39), the quantity hg or h; may be computed from equa-
tion (59) as a function of the dimensionless potential y for the interval
0<y<1 and subject to the additional limitation Isin Yl < 1. The value of
hy or by, associated with the respective boundary value y =1 or y = 0,
permits the calculation of the ion-current ratio j+/jm+ explicitly according
to equation (41) or (42) depending on whether €y =0 or &) = 0, respec~
tively. Coincidently, alternative equations (44) and (45) allow computation of
the dimensionless distance £ as a function of the dimensionless potential y.
The electric Field is given by equation (30) if €y = 0 or equation (34) if
&, = 0. The charge-density distribution and the component distributions are
determined by equations (19) to (21). The electric field and charge-density
distributions are obtained as functions of y, but ¥y has been uniquely re-
lated to the dimensionless distance £ by equation (44) or (45).

12



RESULTS AND DISCUSSION

Figures 2 toc 6 illustrate results of a few sample calculations of the
currents, fields, and charge distributions, all associated with the assumed
condition &y = O and demonstrating the effects of nonvanishing initial par-
ticle velocities. The plotted curves are denoted by capital letters A, B, C,
D, and E associated with independent conditions.

Current ratios as functions of appropriate energy ratios are shown in
figure 2. Curve A, applying to a unipolar current (which is space-charge lim-

36—

Curve Description Wi0 W:I a
32. A Unipolar ion current (&5 =0 >0 - *o
Unipolar electron current - >0 Teo
28 (&=0
B Ambipolar current - fons >0 0 rf
24
Ambipolar current - elec- 0 >0 rt
trons
2 C Ambipolar current - ions 0 20 r¥
iim
Ambipolar current - elec- | >0 0 ri
16 trons
*Obviously, for unipolar ion current, j_=0: a=0,
TFor unipolar electron current, j, =0: a=c.
12 Yora-r: €g=€1=0.
>
8
4
I l I I |
0 2 4 6 8 10

Ratio of initial kinetic energy of charge to its initial
potential energy, w

Figure 2. - Relative current as function of initial relative energy (& = 0.

ited (€5 = 0) for w,y = 0), might just as readily represent the initial energy
dependence of a unipolar electron current, where the ‘electron current is space-
charge limited (& = 0) for w_q = O. In the former case, the ordinate and the
abscissa are j+/% 4 and W,.5, respectively; whereas in the latter case, the
coordinates become  j_/j,. and w.j. According to curve A, the ion (electron)
current density becomes comsiderably greater than the space-charge-limited
value if the ions (electrons) are supplied with initial kinetic energy which

13



is comparable to or greater than the
wyl oa applied electric potential. (Note that,
for w =1, the initial kinetic and po-
A Unipolar space-charge- 0 - 0 tential energies are equal.) If elec-
fimited fon current trons are introduced with vanishing ini-
— tial kinetic energy at the boundary
B [Unipolar ion current (g =0) 1 - 0 £ =1, then for €y =& =0 (a = 1),
curve B indicates the ion-current ratio.
c Ambipolar. Bothcurrents | 0 | 0 | rf Curve C depicts the corresponding
space-charge limited electron-current ratio for this case.
: Comparing curves A and B shows that in-
D Ambipolar current 1o troducing electrons increases the ion-
e Ambipolar current o | 1|t current ratio by a factor which varies
miously, for unipolar ion current, j_=0: a=0, from 1.86 for W40 T 0 to 2.39 for
TFora=r: ég=¢1=0. wig = 10. More exactly, the present

value, Jy/dpe = 1.8652 for wyg = O,

agrees more closely with Langmuir's
value, j_/jm_ = 1.8605 (ref. 5), than
with Miller-ILibeck's value,
j_/jm_ = 1.8532 (ref. 6).

Curve Description Wi

10

®
|

For w > 0, the indicated current
ratios are for a monotonic potential
distribution with €&p = O; however, the
current can be increased further until
the ultimate space-charge limit is
reached. The resulting potential dis-
tribution is then nonmonotonic but can
generally be treated by using the present
analysis by the juxtaposition method
previously mentioned.

(o - wo)/(wl - wO)

Dimensionless potential, y

l [ S
0 2 4 .6 .8 1.0 If the initial kinetic energy is

Dimens%onless dist;nce from positive~ion injection supplied to the electrons. rather than
plane, € . o
the ions, then again for a = r,
Figure 3. - Dimensionless potential distribution (¢ = 0). curve B is now associated with the
electron-current ratio, whereas curve C
is assoclated with the ion-current ratio; that is, the association of the
curves is reversed. For w £ 0.85, introducing negative ions with m_ = m,
Ie_[ = e+, and with or without initial kinetic energy results in a larger posi-
tive ion current density than would exist if the same initial kinetic energy
were supplied to a unipolar flow of iloms.

Figures 3 and 4 show, respectively, dimensionless potential distributions
and dimensionless electric fields corresponding to specific values of the in-
dependent quantities w and a 1included in figure 2. (Curves C are the same
as those for a =1 in figs. 4 and 6 of ref. 6.) Figure 5 depicts the di-
mensionless charge-density distributions corresponding to curves A, B, C, and D
in figures 3 and 4. Charge-density distributions for ambipolar currents with
both current components space-charge limited (curves C) are compared in fig-
ure 5(a) with the corresponding distribution for unipolar, space-charge-limited

14



Curve Description Wio (W1 a

A Unipolar space-charge- 0 - 0
limited fon current

B Unipolar ion current (5= 0)| 1 - 0
c Ambipolar, Bothcurrents | 0 | o | rf
space-charge limited
D Ambipolar current 1 0 ot
3 Ambipolar current 0 1 ¢t
°Obviously, for unipolar fon current, j_=0: a=0,

Fora=r: £0=<£°1=0.

2.0;—-

1, 8j—

16—

14— D

1.2} A

C

“Lélgp 1.0

- E

.6

|
.4
.2
I I I I
0 .2 .4 .6 .8 1.0
Dimensionless distance from positive-ion injection

plane, €
Figure 4. - Dimensionless electric field (¢ = 0).

ion current. A similar comparison is
exhibited in figure 5(b), except that
wio = 1 for both the ambipolar and
unipolar cases.

In figure 5(a) the partial neu-
tralizatlion of the positive ion charge
density when electrons are Introduced
is evident. This is also character-
ized by the increased slope (near
£ = 0) of the potential curve C with
respect to curve A in figure 3 or by
the increased absolute magnitude (near
£ = 0) assoclated with the electric-
field curve C with respect to curve A
in figure 4. More importantly, the
ion charge densities at £ = 1 are
ldentical, so that the increased ion
current density (1.86 times) must be
assoclated with increased velocity of
ions at & = 1 when electrons are
introduced.

If now the positive ions possess
initial kinetic energy, then for the
increasing i1nitial kinetic energy of
the ions the ion charge-density dis-
tribution for ambipolar currents ap-
proaches that for a unipolar ion cur-
rent. For the case wy3 =1, a=r
shown in figure 5(b), the two ion
charge-density distributions (curves B
and D for p+/pm+z) are effectively
identical. Moreover, the relative
charge density of ions at £ = 1 1s
slightly less than the unipolar space-
charge-limited value (unity). Be-
cause the relative charge-density of
lons at £ = 1 1s always less than
or equal to 1 (ef., fig. 5), the in-
crease of ion current shown in fig-
ure 2 must correspond to increased
%on ve%ocity at the ion exit plane

g€ = 1).
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Curve Description Wig | W-1| a

B A Unipolar space-charge- 0 - 0
limited ifon current

B Unipolar ion current (g5 =0)| 1 - 0

c Ambipolar. Both currents | 0 0
space~charge limited

D Ambipolar current 1 0

*Obviously, for unipolar fon current, j_=0: a=0,
Fora=r: §0=ébl=0.

ooy B D ————

Charge-density ratio

-5 S U I | I6 l i

0 .2 .4 .6 .8 L0 0 .2 .4
Dimensionless distance from positive-ion injection plane, €

(a) Effect of introducing electrons. (b) Effect of initial velocity of ions.

Figure 5. - Dimensionless charge-density distributions (& = 0.

The sample results provide a very limited illustration of the variety of
solutions contained in the theory. Particular cases of interest will, of

course, depend on the application.

Lewls Research Center
National Aeronautics and Space Administration

Cleveland, Ohio, June 2, 1964
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APPENDIX - SYMBOLS

(1 + a2)1/2, oq. (1)

(3_/3)(-n/n )22, eq. (10) .

elliptic integral of the second kind, v{( (1 - k2 sinZY)l/2 ar,
eq. (61)

electric field, —d@/dx

electric charge

elliptic integral of the first kind, ‘4r7~(1 - k& sinZT)-l/2 ar,
eq. (60)

Wiéz +a(l + W_l)l/2 = (Y6)2/4J+: eq. (33)

(1 + w_*_o):l-/2 + aw‘-_L{2 - (yi)2/4J+, eq. (37)

¥ -
(3/4) / Ey + W+O)l/2 +a(l -y + W’_l)l/2 - go:l 1/2 dy, ea. (32)
0

1
(5/4) f Ey + W+O)l/2 +a(l -y + w_l)l/2 - gl:' 1/2 dy, eq. (36)
y

(4/9)(3/3y) > eas. (15) and (23)

current density

o 1/2
modulus of elliptic integrals, [(Ae - {gg}>/2A€] , eq. (55)

separation of plane boundaries

ionic mass

modulus of elliptic integrals, 1/k, eg. (55)

[(l + w+o)l/2 - w}_éz]/[(l + W’_l)l/2 - WJ_'{Z], eq. (39)

velocity of ion

ratio of initial kinetic energy of ion to its initial potential energy
(egs. (11) and (12))
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x distance measured from boundary plane at which positive ions are in-

Jjected
v dimensionless potential, (¢ - @O)/(mz - o), eq. (8)
o sin-l[Ky + w;o)é'?]l/z, eq. (48)
B (o - 8)/2, eq. (52)
T sin~t(n sin B), eq. (56)
3 tan=1(1/a), eq. (50)
e (L +wyg + w_l)l/z, eq. (47)
1 ionic charge-to-mass ratio, Ze/m, eq. (7)
€ dimensionless distance from positive-ion injection plane, x/I, eq. (9)
p charge density
) electric potential
Subscripts:
1 value at x =1
m space~charge-limited value
0 value at x, § =0
1 value at & = 1
+ positive ions

- negative ions (electrons)

Superscript:

! derivative, d/dg
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